1. Let $f(x)=\sin (x)$
 the Maclaurin series converge?
(b) Suppose we want to use a partial sum of the Maclaurin series to estimate $\sin (\pi / 3)$. What is $T_{5}(x)$?
(c) What is $f^{(6)}(x)$?
(d) Recall the Maclaurin series is a Taylor series centered at $a=0$. If $|x-0| \leq \pi / 3$, what is the maximum value of $\left|f^{(6)}(x)\right|$?
(e) In Taylor's inequality, the maximum found in part (d) is called M. So we have,

$$
\left|R_{5}(\pi / 3)\right| \leq \frac{M}{(5+1)!}|\pi / 3-0|^{5+1}
$$

Plug in your value for M and simplify to find an upper bound for $\left|R_{5}(\pi / 3)\right|=\left|T_{5}(\pi / 3)-\sin (\pi / 3)\right|$.
2. Let $f(x)=e^{x}$. Suppose we want to calculate $e^{-0.2}$ correctly to within five decimal places using the Maclaurin series for e^{x} (Note: Within 5 decimal places means \mid error $\mid \leq 0.000005$.)
(a) What is $f^{(n)}(x)$ for a given integer n ?
(b) Find the maximum value of $f^{(n+1)}(x)$ if $|x-0| \leq 0.2$. This is M.
(c) Set up Taylor's inequality for $x=-0.2$ and a general n.
(d) We want $\left|R_{n}(-0.2)\right| \leq 0.000005$. Find the smallest value of n that guarantees this using technology or guess-and-check.
(e) Find $T_{n}(-0.2)$ for the value of n you found in (d). This is our estimate for $e^{-0.2}$, correct to 5 decimal places.
3. Suppose we want to estimate $\int_{0}^{1} x \cos \left(x^{3}\right) d x$ to within three decimal places (|error $\left.\mid \leq 0.0005\right)$.
(a) Use the Maclaurin series $\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$ to find the Maclaurin series for $f(x)=$ $x \cos \left(x^{3}\right)$.
(b) Find the general antiderivative $F(x)=\int x \cos \left(x^{3}\right) d x$ by integrating the Maclaurin series for $f(x)$.
(c) Remember $\int_{0}^{x} f(t) d t=F(x)-F(0)$. Show $F(0)=0$. Then $\int_{0}^{1} f(t) d t=F(1)$.
(d) We have a Maclaurin series for $F(x)$. Using this series, what is $F^{(n+1)}(x)$ for a given n ?
(e) What is the maximum value of $\left|F^{(n+1)}(x)\right|$ for $|x-0| \leq 1$?
(f) Use Taylor's Inequality with the value of M you just found to find the number of terms necessary for $\left|R_{n}(1)\right| \leq 0.0005$. (Guess-and-check or graph.)
(g) Find the partial sum for $F(1)$ for the value of n you just found. This is an estimate for $\int_{0}^{1} x \cos \left(x^{3}\right) d x$ to within three decimal places.

