- 1. Let $f(x) = \sin(x)$
 - (a) Recall that the Maclaurin series for f(x) is $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$. For what values of x does the Maclaurin series converge?
 - (b) Suppose we want to use a partial sum of the Maclaurin series to estimate $\sin(\pi/3)$. What is $T_5(x)$?
 - (c) What is $f^{(6)}(x)$?
 - (d) Recall the Maclaurin series is a Taylor series centered at a = 0. If $|x 0| \le \pi/3$, what is the maximum value of $|f^{(6)}(x)|$?
 - (e) In Taylor's inequality, the maximum found in part (d) is called M. So we have,

$$|R_5(\pi/3)| \le \frac{M}{(5+1)!} |\pi/3 - 0|^{5+1}$$

Plug in your value for M and simplify to find an upper bound for $|R_5(\pi/3)| = |T_5(\pi/3) - \sin(\pi/3)|.$

- 2. Let $f(x) = e^x$. Suppose we want to calculate $e^{-0.2}$ correctly to within five decimal places using the Maclaurin series for e^x (Note: Within 5 decimal places means $|\text{error}| \leq 0.000005$.)
 - (a) What is $f^{(n)}(x)$ for a given integer n?
 - (b) Find the maximum value of $f^{(n+1)}(x)$ if $|x-0| \le 0.2$. This is M.
 - (c) Set up Taylor's inequality for x = -0.2 and a general n.
 - (d) We want $|R_n(-0.2)| \leq 0.000005$. Find the smallest value of n that guarantees this using technology or guess-and-check.
 - (e) Find $T_n(-0.2)$ for the value of n you found in (d). This is our estimate for $e^{-0.2}$, correct to 5 decimal places.
- 3. Suppose we want to estimate $\int_0^1 x \cos(x^3) dx$ to within three decimal places ($|\text{error}| \le 0.0005$).
 - (a) Use the Maclaurin series $\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ to find the Maclaurin series for $f(x) = x \cos(x^3)$.
 - (b) Find the general antiderivative $F(x) = \int x \cos(x^3) dx$ by integrating the Maclaurin series for f(x).
 - (c) Remember $\int_0^x f(t) dt = F(x) F(0)$. Show F(0) = 0. Then $\int_0^1 f(t) dt = F(1)$.
 - (d) We have a Maclaurin series for F(x). Using this series, what is $F^{(n+1)}(x)$ for a given n?
 - (e) What is the maximum value of $|F^{(n+1)}(x)|$ for $|x-0| \le 1$?
 - (f) Use Taylor's Inequality with the value of M you just found to find the number of terms necessary for $|R_n(1)| \leq 0.0005$. (Guess-and-check or graph.)
 - (g) Find the partial sum for F(1) for the value of n you just found. This is an estimate for $\int_0^1 x \cos(x^3) dx$ to within three decimal places.